Organic Fluorine as a Hydrogen-Bond Acceptor: Recent Examples and Applications

Reporter: Xinjin Li

Feb 2nd, 2015

Content

- **2 Properties of Hydrogen Bonds**
- **3** C(sp²)–F as a Hydrogen-Bond Acceptor
- 4 C(sp³)–F as a Hydrogen-Bond Acceptor
- 5 Summary and Perspective

1. Introduction

Whether or not organic fluorine can act as a hydrogen-bond acceptor?

C–F bonds can act as weak, yet energetically favorable proton acceptors.

1983 ,1994, Glusker 2002, Desiraju 2012, Schneider

Schneider, H.-J. *Chem. Sci.* **2012**, *3*, 1381.

Fluorine lone pairs are not good hydrogen-bond acceptors.

1996, O'Hagan 1997, Dunitz and Taylor 2008, O'Hagan

O'Hagan, D. *Chem. Soc. Rev.* **2008**, *37*, 308.

Enough evidence has been published to support the idea that organic fluorine is indeed a hydrogen-bond acceptor.

Champagne, P. A.; Desroches, J.; Paquin, J.-F. Synthesis 2015, 47, 306-322.

2011, IUPAC set the following criteria for a X–H \cdots Y hydrogen bond.

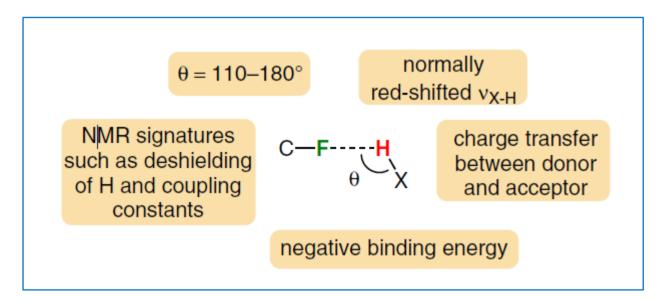


Figure 1 IUPAC requirements for hydrogen bonds

Pure Appl. Chem., **2011**, *83*, 1619–1636. Pure Appl. Chem., **2011**, *83*, 1637–1641. Hydrogen bonds with organic fluorine are **quite different** from conventional hydrogen bonds and have specific properties.

(1) Organic fluorine is a weak hydrogen-bond acceptor.

- (2) Energy calculations of weak C(sp³/sp²)-H…F-C(sp³/sp²) intermolecular interactions:
 C(sp²)−H is a better donor than C(sp³)−H; C(sp³)−F is a better acceptor than C(sp²)−F.
- (3) Shielded fluorine atoms are better acceptors and rank them as follows: CH_3CH_2F (¹⁹F δ = -212) > CH_3CHF_2 (¹⁹F δ = -110) \cong $CH_3CF_2CH_3$ (¹⁹F δ = -84.5) > CH_3CF_3 (¹⁹F δ = -65).

(1) Panini, P.; Chopra, D. *CrystEngComm* **2013**, *15*, 3711.
(2) Dalvit, C.; Vulpetti, A. *ChemMedChem* **2011**, *6*, 104.

3.1 O–H as Donor

- (1) O–H is one of the strongest hydrogen-bond donors.
- (2) Intramolecular hydrogen bonds are more likely to occur than intermolecular hydrogen bonds.

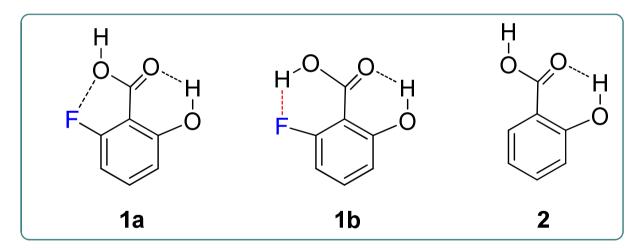
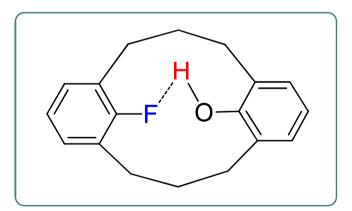



Figure 2 Most stable conformers of 6-fluorosalicylic acid (1) and salicylic acid (2)

Silla, J. M.; Duarte, C. J.; Rittner, R.; Freitas, M. P. RSC Adv. 2013, 3, 25765.

3.1 O–H as Donor

- (1) One kind of hydrogen atom contact with the fluorine atom ($d_{H,F}$ = 2.11 Å).
- (2) The O–H \cdots F angle in the second conformer is 131.6°.
- (3) The signal of the hydrogen atom of the hydroxyl group appears as a doublet $[^{1h}J_{(H,F)} = 6.0 \text{ Hz}]$ in low polar solvents with an upfield shift ($\Delta \delta = 0.25-0.5 \text{ ppm}$)

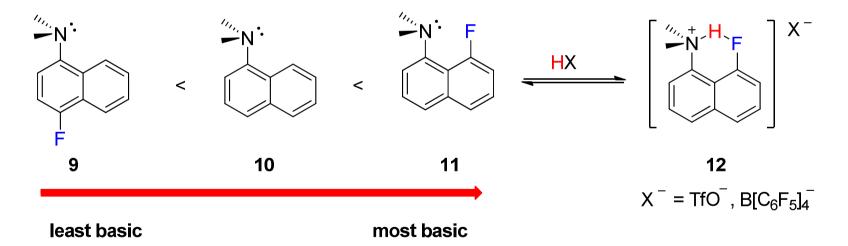


Figure 3 9-Fluoro-18-hydroxy-[3.3]metacyclophane contains a O–H…F–C hydrogen bond

Takemura, H.; Kotoku, M.; Yasutake, M.; Shinmyozu, T. Eur. J. Org. Chem. 2004, 2019.

3.2 N–H as Donor

- (1) Calculations predicted a 66 cm⁻¹ IR red shift for the N–H stretch band of **12** relative to protonated **10**.
- (2) Salt **12** (X– = TfO⁻, B[C₆F₅]₄⁻) was also characterized by X-ray crystallography $(d_{HF} = 2.13 \text{ Å}, \angle N-H-F = 120.7^{\circ})$, and ¹⁹F NMR analysis [^{1h}J_(H,F) = 43.7 Hz].

Scheme 1 Relative basicity and explanation for increased basicity of 11

Scerba, M. T.; Johnson, M. A.; Lectka, T; and et al. J. Org. Chem. 2011, 76, 7975.

3.3 C(sp²)–H as Donor

Supramolecular arrangements involving hydrogen bonds with organic fluorine were also observed.

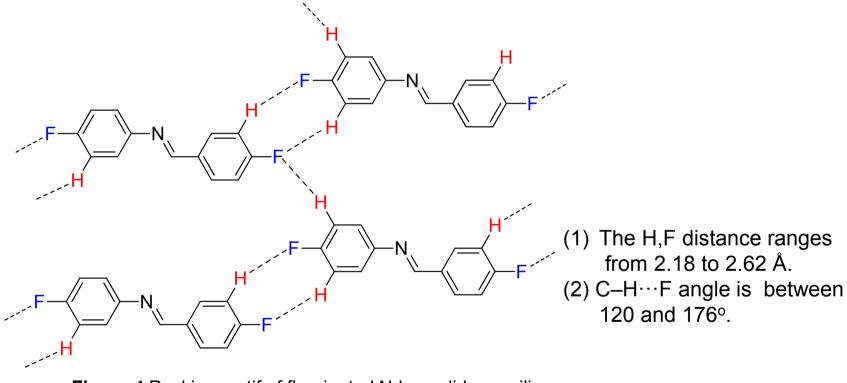
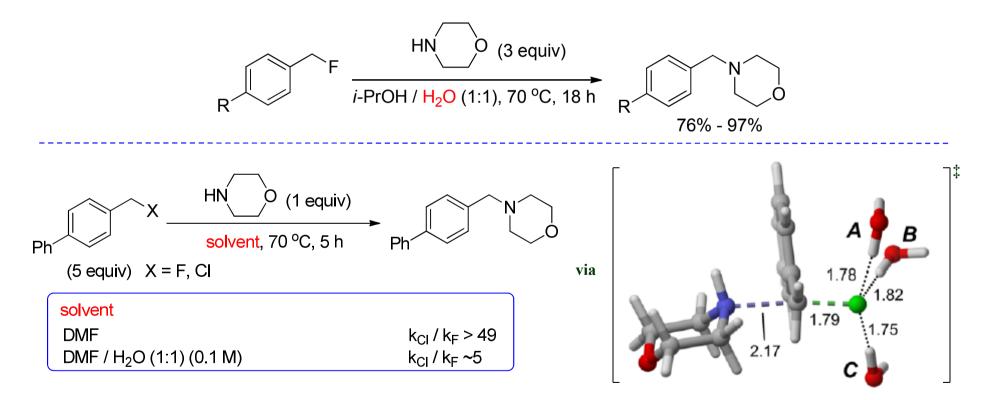
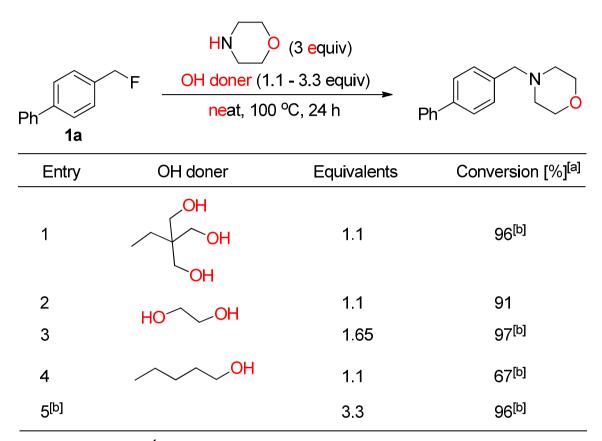



Figure 4 Packing motif of fluorinated N-benzylideneaniline

Kaur, G.; Panini, P.; Chopra, D.; Choudhury, A. R. Cryst. Growth Des. 2012, 12, 5096.

4.1 O–H as Donor

Hydrogen-bond donors could act as C–F activation agents through a similar interaction.



Champagne, P. A.; Pomarole, J.; Paquin, J.-F.; and et al. Org. Lett. 2013, 15, 2210.

Ph	$\stackrel{\frown}{}_{F} \frac{Nu(3eq)}{i-PrOH/H_2O(1:7)}$		Ph	u
1a			2, 11-19	_
Entry	Nu	Product	Yield [%] ^[a]	
1	HNO	2	96	
2		11	98	
3	MeHN Ph	12	73	
4 ^[b]	HCI.HN	13	97	
5 ^[c]	H ₂ N	14	77	
6 ^[c]	H ₂ N-OMe	15	96	
7[d]	HO	16	36	[a] Yields after purification by flash
8	HS	17	88	chromatography. [b] 3 equiv of DBU was also added. [c] Reaction was performed
9	HS	18	64	at 90 °C for 48 h. [d] 3 equiv of NaOH was also added. [e] 10 equiv. of the n-
10 ^[e]	<i>n-</i> Bu₄N⁺CN⁻	19	13	Bu ₄ N ⁺ CN ⁻ was used.

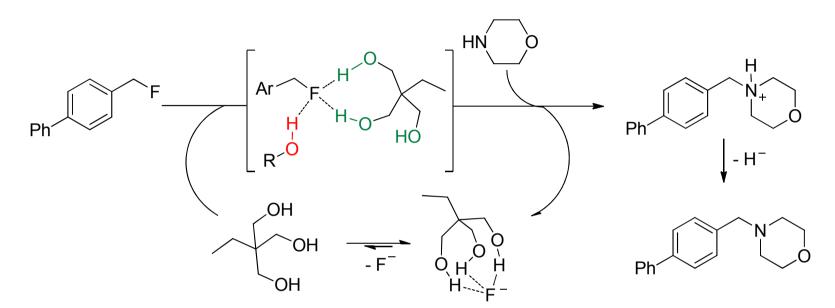
Table 1 SN₂ reaction of 4-phenylbenzyl fluoride (**1a**) with N-, O-, S- and C- nucleophiles.

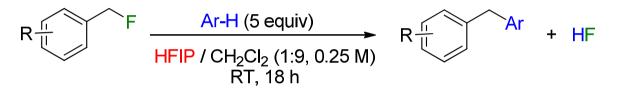
Table 2 Substitution of 1a with morpholine musing different OH donors

[a] Determined by ¹H NMR analysis of the crude mixture.

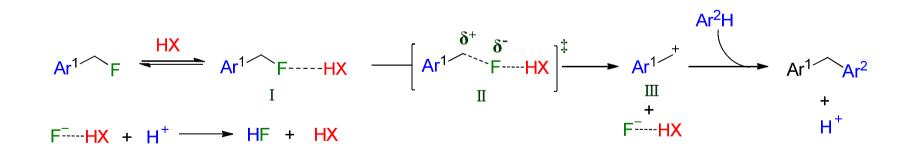
[b] Average of two experiments.

Champagne, P. A.; Drouin, M.; Legault, C. Y.; Audubert, C.; Paquin, J.-F. *J. Fluorine Chem.* **2014**, in press; DOI: 10.1016/j.jfluchem.2014.08.018

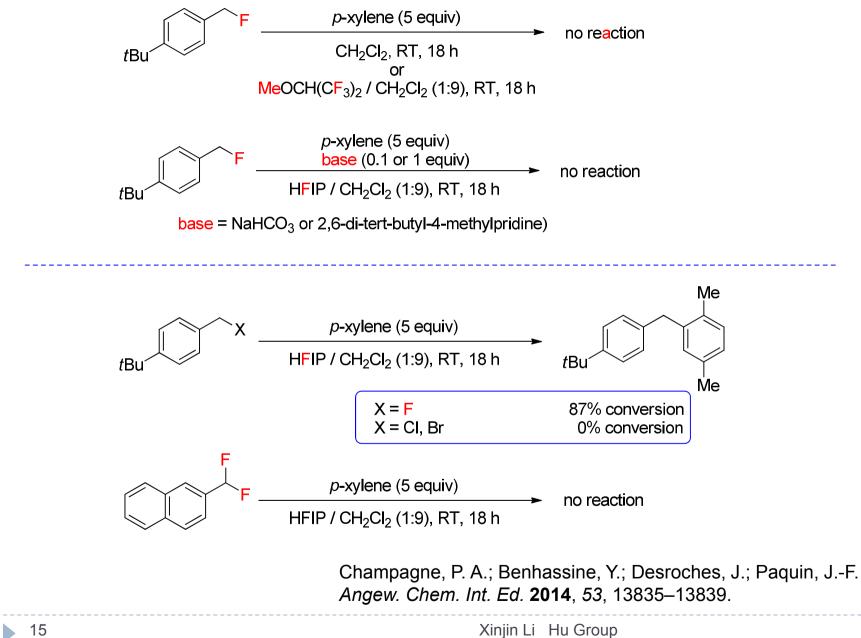



Figure 5 Improved proposed mechanism (R–O–H represents an alcohol from another triol molecule)

Three OH groups around the fluorine atom at the transiton-state are better to activate the C–F bond, but only two of them can originate from a single triol molecule.


Champagne, P. A.; Drouin, M.; Legault, C. Y.; Audubert, C.; Paquin, J.-F. *J. Fluorine Chem.* **2014**, in press; DOI: 10.1016/j.jfluchem.2014.08.018

4.1 O-H as Donor


The activation and nucleophilic substitution of benzylic fluorides by using C–F \cdots H–O hydrogen bonds.

HFIP: (CF₃)₂CHOH (a stronger hydrogen-bond donor than water)

Champagne, P. A.; Benhassine, Y.; Desroches, J.; Paquin, J.-F. *Angew. Chem. Int. Ed.* **2014**, *53*, 13835–13839.

4.2 N–H as Donor

Hydrogen bonds to fluorine could effectively alter binding properties of chiral fluorinated molecules.

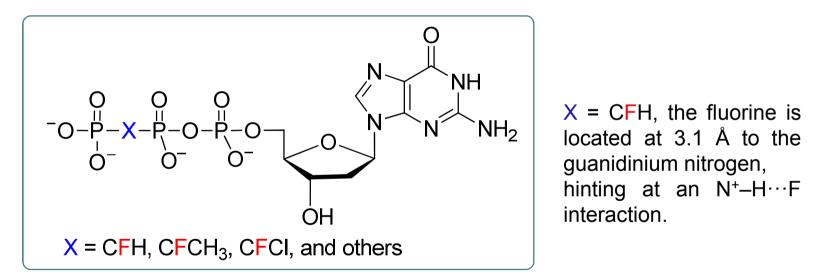
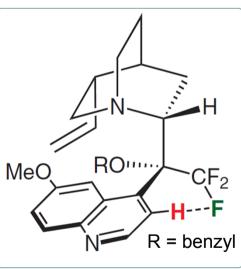


Figure 5 General structure of modified deoxyguanosine triphosphate (dGTP)


Only one diastereomer was present in the crystal of the ternary complex, when monofluorinated analogues were used.

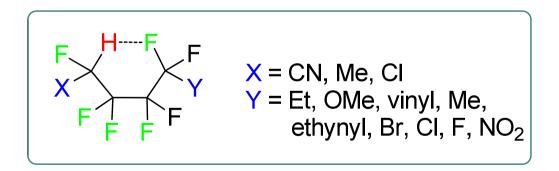
```
Batra, V. K.; Pedersen, L. C.; McKenna, C. E. and et al. J. Am. Chem. Soc. 2010, 132, 7617.
Xinjin Li Hu Group
```

16

4.3 C(sp²)– H as Donor

- (1) NMR spectroscopic and coupling constants validate the syn-closed structure.
- (2) The syn-closed conformation was lower in energy than the anti-closed conformation in chloroform.

(1) The H,Fdistance is 2.26 Å. (2) C–H \cdots F angle is 130 $^{\circ}$.


Figure 6 9-Dehydro-9-(trifluoromethyl)-9-epiquinidine derivative with observed C-H…F contact

Prakash, G. K. S.; Wang, F.; Rahm, M.; Shen, J.; Ni, C.; Haiges, R.; Olah, G. A. *Angew. Chem. Int. Ed.* **2011**, *50*, 11761.

4.4 C(sp³)–H as Donor

Hydrogen-bond donation from C(sp³)–H is just as difficult to evidence as its sp² equivalent in experimental studies.

- (1) The C–H···F hydrogen bond becomes stronger with increasing electron-donating ability of Y substituent.
- (2) A shorter $H \cdots F$ distance, longer C–F bonds, and shorter C–H bonds.

Figure 6 Model system used for investigating group effects on the H…F interaction

Lu, N.; Ley, R. M.; Negishi, E.-i.; and et al. J. Phys. Chem. A 2013, 117, 8256.

- (1) Even though hydrogen bonds involving organic fluorine is a weak interaction, convincing evidence of its existence has been given and various applications have been found.
- (2) A number of studies rely on insufficient evidence to determine the presence of such hydrogen bonds.
- (3) Future endeavors should focus on demonstrating its power to enhance reactivity and/or selectivity in practical systems.

Thanks for your attention!